
Clark S. Snow and Thomas Mattsson 
Sandia National Laboratories

Albuquerque, NM

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, 
for the United States Department of Energy’s National Nuclear Security Administration 

under contract DE-AC04-94AL85000.

Elastic Constants of Rare Earth and 
Transition Metal Di-Hydrides



How much do the helium release properties 
simply depend on the crystal structure?

• Similar release 
numbers from similar 
crystal structures.
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Is bubble shape dependent simply on 
crystal structure?

• Helium bubble shape depends on crystal 
structure.
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What parameters are needed to make 
“predictions”?

Cowgill’s predictions are predicated on:

p = 2γ/r + μb/[r(1+ε)]

• b = Burger’s vector (Lattice)
• μ

 
= shear modulus (Elastic Constants)

• γ
 

= surface energy

• We can calculate all of these parameters!!!



Calculating the lattice constant is easy.
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The results for the metallic lattice constant 
calculations are excellent.

Metal/Values Erbium Scandium Titanium Zirconium Yttrium Palladium

Calculated
(Å)

a=3.586
c=5.5578

a=3.321
c=5.163

a=2.9390
c=4.646

a=3.2390
c=5.1780

a=3.6605
c=5.6721

a=3.9598

Experimental
(Å)

a=3.5588
C=5.5874

a=3.309
c=5.2733

a=2.9508
c=4.6855

a=3.2320
c=5.147

a=3.6474
c=5.7306

a=3.8907

Percent Error a=0.76%
c=0.53%

a=0.36%
c=2.1%

a=0.399%
c=0.8%

a=0.2%
c=0.6%

a=0.36%
c=1%

a=1.77%

•For cubic and hexagonal systems the 
agreement is excellent.



The results for the metal hydride lattice 
constants are also excellent

Metal/Values ErH2 ScH2 YH2 ZrH2 TiH2 LaH2

Calculated
(Å)

a=5.1295 a=4.7815 a=5.2168

Experimental
(Å)

a=5.123 a=4.78 a=5.205

Percent 
Error

a=0.13% 0.03% a=0.22%

•Cubic systems show excellent agreement.

•Still having a few difficulties with the tetragonal 
systems.



How to calculate elastic constants:  
stress-strain I

• The stress, σ, and the strain, ε, must be 
symmetric.     σij

 

= ∑cijkl

 

εkl

• The nature of the cijkl

 

depends on symmetry of the 
crystal.

• Short hand
– c1111

 

→ c11

 

relations between σ11

 

and ε11
– c1122

 

→ c12

 

relations between σ11

 

and ε22
– c2323

 

→ c44

 

relations between σ23

 

and ε23
– In general, 11→1; 22 →2; 23=32 →4;13=31 →5;12=21 →6



How to calculate elastic constants:  
stress-strain II

• Maximum of 21 elastic constants for a crystalline body.

• Cubic crystals the elastic constants reduce to just three 
independent numbers
– c11

 

=c22

 

=c33

 

axial compression
– c44

 

=c55

 

=c66

 

shear modulus
– c12

 

=c13

 

=c23

 

modulus for dilation on compression
– All other cij

 

=0



How to calculate elastic constants:  
stress-strain III
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How to calculate elastic constants:  
stress-strain IV

• Using Hook’s law, if ε

 

are small, can expand 
energy in terms of ε.

• For cubic crystal, energy relation is
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How to calculate elastic constants:  
stress-strain V
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Calculated elastic constants for the cubic 
phases of some di-hydrides.

Quantity ErD2 YD2 ScD2

C11

 

(GPa) 146 122 167

C12

 

(GPa) 58 61 60

C44

 

(GPa) 74 69 79

B=1/3 (C11

 

+ 2C12

 

)
GR

 

= 5(C11

 

- C12

 

)C44

 

/[4C44

 

+ 3(C11

 

-C12

 

)] 
GV

 

= (C11

 

-C12

 

+ 3C44

 

)/5
GH

 

= (GR

 

+GV

 

)/2
Y = (9BGH

 

)/(3B + GH

 

) 



Determined moduli
 

for hydrides compared 
to the VASP calculated values.

Quantity ErD2

(cubic)
YD2

(cubic) 
ScD2

(cubic)
LaD2

(cubic)
TiD2

(tet.)
ZrD2

(tet.)

Young’s 
Modulus 
(GPa)

147 124 164

Shear 
Modulus 
(GPa)

60 50 68

Bulk 
Modulus 
(GPa)

87 82 96

Red
 

= calculated values



Material properties of the thin films 
are deduced using FEM modeling.
Properties of the indenter and 
underlying layers and substrate are 
fixed at known values.

Y and E for the layer are varied until a 
good fit to experiment is obtained. 

Tip yielding, stress, friction are 
all modeled.

Two primary simplifications:
2-dimensional axi-symmetric 
meshes
isotropic elastic-plastic materials 
with Mises yield criteria

Knapp, et al., JAP, vol. 85, p.1460 (1999) 

Hardness of the layer material
is determined by an additional 
simulation of a “bulk” sample of 
just the layer material:

Y, E 

He-implanted Ni
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Sample configuration

Silicon (111)

Molybdenum 1000 Å
 

thick

Metal ~5000 Å
 

thick



Moduli
 

determined by nano-indentation for 
bare metals match “accepted”

 
values.

Quantity Erbium Scandium Titanium Yttrium Zirconium

Young’s 
Modulus 
(GPa)

77+/-

 

7
(70) (74)

144 +/-

 

15
(116)

147+/-

 

13
(64)

154 +/-

 

20
(68)

Shear 
Modulus 
(GPa)

31 +/-

 

4
(28) (29)

58+/-

 

8
(44)

59 +/-

 

6
(26)

61 +/-

 

15
(33)

Bulk 
Modulus 
(GPa)

50 +/-

 

3
(44) (57)

96 +/-

 

5
(110)

98 +/-

 

4
(41)

103 +/-

 

6
()

Black = nano-indent values
Red

 
= “accepted values”



Determined moduli
 

for hydrides compared 
to the VASP calculated values.

Quantity ErD2

(cubic)
YD2

(cubic) 
ScD2

(cubic)
LaD2

(cubic)
TiD2

(tet.)
ZrD2

(tet.)

Young’s 
Modulus 
(GPa)

148 +/-

 

20
(147)

135 +/-

 

20
(124) (164)

36 +/-

 

6
()

100 +/-

 

15
()

175 +/-

 

20
()

Shear 
Modulus 
(GPa)

60 +/-

 

10
(60)

55 +/-

 

10
(50) (68)

14 +/-

 

3
()

40 +/-

 

7
()

70 +/-

 

10
()

Bulk 
Modulus 
(GPa)

97 +/-

 

4
(87)

90 +/-

 

7
(82) (96)

24 +/-

 

3
()

66 +/-

 

5
()

115 +/-

 

7
()

Black = nano-indent values
Red

 
= calculated values



Graphical Summary of Results
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What is the degree of anisotropy?

ErD2 ScD2 YD2
1.4

1.6

1.8

2.0

2.2

2.4

Ze
ne

r A
ni

so
tro

py
 A

Material

•Zener’s Elastic-Anisotropy 
Index for cubic materials

A=2C44 /(C11 -C12 )

The ratio of the two extreme 
elastic-shear constants

•“..higher crystal symmetry may 
relate to higher

elastic anisotropy” ,
Ledbetter and Migliori, J. Appl. 

Phys., 100, 063516 (2006).



Conclusions about elastic constants

• Nano-indentation gives good results for “most”
 materials.

– Issues are probably due to sample/substrate 
problems and not the technique.

– Computational results are generally within error.
• Definitely need to expand material list beyond 

cubic crystals.



Implications for helium retention.

• What does it say about helium retention and 
bubble shape?
– Important piece of the puzzle but need more 

information:
• Tackle more materials
• Re-do some experimental results

– Calculate and measure the Surface Energy
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